
SWE404/DMT413
BIG DATA ANALYTICS

Lecture 6: Spark II

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my 

Office: A1-432 

Office hour: 2pm-4pm Mon & Thur



MORE ON RESILIENT DISTRIBUTED DATASETS (RDD)

1



Basic RDDs: Transformations

2

Functions Description

map(func) Apply a function to each element in the RDD and return an RDD of the result 

flatMap(func) Similar to map, but each input item can be mapped to 0 or more output items

filter(func) Return an RDD consisting of only elements that pass the condition passed to filter() 

distinct() Remove duplicates 

union(RDD) Produce an RDD containing elements from both RDDs 

intersection(RDD) RDD containing only elements found in both RDDs 

cartesian(RDD) Cartesian product with the other RDD

sample(withReplacement, 
fraction, seed)

Sample a fraction fraction of the data, with or without replacement, using a given random number generator seed

glom() Return an RDD created by coalescing all elements within each partition into a list

coalesce(numPartitions) Decrease the number of partitions in the RDD to numPartitions.

repartition(numPartitions) Reshuffle the data in the RDD randomly to create either more or fewer partitions and balance it across them.

Check official document for more: https://spark.apache.org/docs/latest/api/python/pyspark.html

https://spark.apache.org/docs/latest/api/python/pyspark.html


Basic RDDs: Actions

3

Functions Description

count() Gets the number of data elements in an RDD

countByValue() Number of times each element occurs in the RDD 

collect() Gets all data elements in the RDD as an array

reduce() Aggregates data elements into the RDD

take(n) Used to fetch the first n elements of the RDD

top(num) Return the top num elements the RDD 

takeOrdered(num) Return num elements based on provided ordering 

takeSample(withReplacement, num, [seed]) Return num elements at random 

aggregate(zeroValue, seqOp, combOp) Aggregate the elements of each partition, and then the results for all the partitions

foreach(func) Apply the provided function to each element of the RDD 

Check official document for more: https://spark.apache.org/docs/latest/api/python/pyspark.html

https://spark.apache.org/docs/latest/api/python/pyspark.html


Example

4

¡ map() transforms RDD lines 
into RDD line_length.

¡ first() and reduce() are 
actions to draw results from 
the RDD line_length.



collect()

¡ collect() is an action that returns a list that contains all of 
the elements in this RDD.
¡ Note: This method should only be used if the resulting array is 

expected to be small, as all the data is loaded into the driver’s 
memory.

5



filter()

¡ Filter is just like WHERE condition in SQL query.

6



map() vs flatMap()

¡ map() will return a sequence of the same length as 
the original data.

¡ flatMap() will return a sequence whose length equals 
to the sum of the lengths of all sub-sequance
returned by map.

7

Image source: https://data-flair.training/blogs/apache-spark-map-vs-flatmap/

https://data-flair.training/blogs/apache-spark-map-vs-flatmap/


Transform Operator Examples

Note: 
¡ Union does not return distinct set.
¡ Sample does not return the same number of items for 

each run. The argument 0.1 is the expected fraction.

8



Action Operator Examples

9



aggregate()

¡ aggregate(zeroValue, seqOp, combOp)

¡ zeroValue: The initialization value, for your 
result, in the desired format.

¡ seqOp: The operation you want to apply to 
RDD records. Runs once for every record in a 
partition.

¡ combOp: Defines how the resulted objects 
(one for every partition), gets combined.

10

(0, 0)

0+1
0+1

1+2
1+1

0+3
0+1

3+4
1+1

(3,2)

(7,2)

(10,4)



RDD Persistence/Caching

¡ In Spark, we can use some RDDs multiple times. 

¡ We repeat the same process of RDD evaluation each time it required into action. 

¡ This task can be time and memory consuming, especially for iterative algorithms that 
look at data multiple times. 

¡ To solve the problem of repeated computation the technique of persistence came 
into the picture.

11



RDD Persistence/Caching

¡ Save the intermediate result so that we can use it further if required. 
¡ When we persist RDD, each node stores any partition of it in memory and makes it reusable for 

future use.

¡ It reduces the computation overhead.

¡ We can make persisted RDD through cache() and persist() methods.

¡ The difference:
¡ Using cache() the default storage level is MEMORY_ONLY.

¡ Using persist()we can use various storage levels.

12



Storage levels of Persisted RDDs

By persist() we can use various storage levels to Store Persisted RDDs. 

13

RDD Storage Level Store Format When size of RDD is 
Greater Than Memory

Memory 
Usage

CPU Time

MEMORY_ONLY (default) Deserialized Java 
object

Recompute Very high Low

MEMORY_AND_DISK Store on the disk High Medium

MEMORY_ONLY_SER Serialized Java 
object (one-byte 

array per partition)

Recompute Low High

MEMORY_AND_DISK_SER Store on the disk Low High

DISK_ONLY - - Very low Very high



Paired RDDs

¡ Paired RDD = an RDD 
of key / value pairs.

14

Use the first words of RDD lines as the keys in the pair RDD pairs



Transformations on Single Paired RDDs

15

Method Name Purpose

reduceByKey(func) Combine values with the same key 

groupByKey() Group values with the same key 

combineByKey(createCombiner, mergeValue, 
mergeCombiners)

Combine values with the same key using a different result type

mapValues(func) Apply a function to each value of a pair RDD without changing the key

flatMapValues(func) Pass each value in the key-value pair RDD through a flatMap function 
without changing the keys

keys() Return an RDD of just the keys. 

values() Return an RDD of just the values. 

sortByKey() Return an RDD sorted by the key. 

Official document: https://spark.apache.org/docs/latest/api/python/pyspark.html

https://spark.apache.org/docs/latest/api/python/pyspark.html


keys(), values() and sortByKey()

16

Customized key 
map function 
for sorting



mapValues() and flatMapValues()

17



groupByKey() and reduceByKey()

¡ reduceByKey provide much better performance than groupByKey for aggregation (such as a sum or average).
¡ reduceByKey perform the merging locally on each mapper before sending results to a reducer, similarly to a “combiner” in 

MapReduce.

¡ groupByKey is usually used for non-aggregation operations like returning a list.
¡ groupByKey is selected as the worst Spark operation, why?

18



combineByKey()

¡ combineByKey(createCombiner, mergeValu
e, mergeCombiners)

¡ Generic function to combine the elements for each key 
using a custom set of aggregation functions.
¡ Turns an RDD[(K, V)] into a result of type RDD[(K, C)], for a 

“combined type” C.

¡ Users provide three functions:
¡ createCombiner, which turns a V into a C (e.g., creates a 

one-element list, the combined type)
¡ mergeValue, to merge a V into a C (e.g., adds it to the end of 

a list)
¡ mergeCombiners, to combine two C’s into a single one (e.g., 

merges the lists)

19



Transformations on Two Paired RDDs

20

Method Name Purpose

subtractByKey(other) Remove elements with a key present in the other RDD.  

join(other) Perform an inner join between two RDDs. 

leftOuterJoin(other) Perform a join between two RDDs where the key must be 
present in the first RDD 

rightOuterJoin(other) Perform a join between two RDDs where the key must be 
present in the other RDD 

fullOuterJoin(other) Perform a join between two RDDs where the key must be 
present in the other RDD 

cogroup(other) Group data from both RDDs sharing the same key 

Official document: https://spark.apache.org/docs/latest/api/python/pyspark.html

https://spark.apache.org/docs/latest/api/python/pyspark.html


subtractByKey()

21



join()

¡ Each pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is 
in self and (k, v2) is in other.

22



cogroup()

¡ cogroup does full join and returns merged iterable values.

23



Actions on Pair RDDs

24

Official document: https://spark.apache.org/docs/latest/api/python/pyspark.html

Method Name Purpose
countByKey() Count the number of elements for each key
collectAsMap() Collect the result as a map to provide easy lookup
lookup(key) Return all values associated with the provided key

https://spark.apache.org/docs/latest/api/python/pyspark.html


Examples of Actions on Pair RDDs

25



RDD Transformation Types

Narrow transformation :
¡ Single partition of the parent RDD is 

needed for computation.

¡ Input and output stay in the same 
partition.

¡ No data movement is needed.

26

Image source: https://data-flair.training/blogs/spark-rdd-operations-transformations-actions/

https://data-flair.training/blogs/spark-rdd-operations-transformations-actions/


RDD Transformation Types

Wide transformation : 
¡ Multiple partitions of the parent RDD 

are needed for computation.

¡ Data shuffle is needed before 
processing.

27

Image source: https://data-flair.training/blogs/spark-rdd-operations-transformations-actions/

https://data-flair.training/blogs/spark-rdd-operations-transformations-actions/


Reduce the Amount of Data Shuffling

¡ Ideally a Spark program should 
avoid shuffles (wide 
transformations).

¡ In some cases, transformation 
can be re-ordered to reduce 
the amount of data shuffling.

28

An example of a JOIN between two huge RDDs followed by a filtering.



Partitions

¡ (key,value) pairs in the same partition are 
guaranteed to be in the same machine.

¡ Each node may contain more than one 
partition.

¡ Number of partitions determines parallelism.
¡ Location of partitions determines data 

locality.

29



glom(), coalesce() and repartition()

¡ repartition can increase or decrease 
the level of parallelism in this RDD. 
Internally, this uses a shuffle to 
redistribute data. 

¡ If you are decreasing the number of 
partitions in this RDD, consider 
using coalesce, which can avoid 
performing a shuffle.
¡ coalesce can also shuffle by setting the 

second argument as True, while its 
default value is False.

30



partitionBy()

¡ partitionBy() can only be used for paird RDDs.

¡ partitionBy() is most importantly used for making shuffling functions more 
efficient, such as reduceByKey(), join(), cogroup() etc.. 

¡ It is only beneficial in cases where a RDD is used for multiple times, so it is usually 
followed by persist().

31



32



Stage

¡ A stage is a step in a physical execution plan.

¡ Each job which gets divided into smaller sets 
of tasks is a stage.
¡ Narrow transformations are grouped into stages.

¡ it is just like the map and reduce stages in 
MapReduce.
¡ A stage is scheduled once all of the stages it is 

dependent on are available.

33

Black boxes are partitions that are 
already in memory (use persist)



Conclusion

After this lecture, you should know:
¡ Some commonly used RDD transformations and actions.

¡ What is RDD persistence?

¡ What is paired RDD?

¡ What are narrow and wide transformation?

¡ What are RDD partitions?

34



Thank you!

¡ Any question?

¡ Don’t hesitate to send email to me for asking questions and discussion. J

35

Acknowledgement: Thankfully acknowledge slide contents shared by Dr. Ye Luo


